The Numerical Simulation Study on the Heat Transfer Mechanism in Heavy Oil Reservoirs During In-Situ Combustion

 

原位燃烧技术通过向油藏注入空气点燃重油资源,利用产生的热量提高采收率,是一种关键的开采方法。然而,当前对原位燃烧(火烧)技术的模拟研究仍主要集中在宏观层面。因此,开展更详细的数值模拟研究具有重要意义。

本文建立了油藏在原位燃烧过程中热传递的数学模型,深入研究了入口温度、注入压力、注入时间和孔隙度对油藏内部热传递过程的影响。研究结果表明,随着注入时间的增加,油藏内部温度逐渐升高。孔隙度(从0.1增加到0.3,热传播率提高15%)和注入压力(从5 MPa增加到8 MPa,热传播率提高25%)对热传递率有显著影响。

CMG软件应用情况

文中提到,CMG STARS数值模拟器被用于研究注入参数对原位燃烧过程的影响。具体而言,文中引用了Jin X.的研究结论,指出在原位燃烧过程中,注入率对油藏温度传递有显著影响。当注入率过高时,会导致反应提前终止,因为过量的注入带走了过多热量,导致反应燃料不足;而当注入率过低时,会导致油藏内燃烧不完全。CMG软件的应用帮助研究人员更好地理解了注入参数对原位燃烧效率的影响,为优化燃烧过程提供了理论支持。

图表, 条形图

中度可信度描述已自动生成

表格

中度可信度描述已自动生成

形状, 矩形

描述已自动生成

图形用户界面

描述已自动生成

Abstract

The escalating energy demand has prompted nations to prioritize the development of high-viscosity and challenging-to-extract heavy and extra-heavy oil reserves. Consequently, the technique of in-situ combustion in oil reservoirs by injecting air to ignite heavy oil resources, leveraging the generated heat to enhance recovery rates, is a particularly critical extraction method. However, simulation studies of in-situ combustion techniques are still primarily conducted at a macroscopic level. Therefore, conducting more detailed numerical simulation studies holds significant importance. This paper establishes a mathematical model for heat transfer within reservoirs during in-situ combustion, thoroughly investigating the effects of inlet temperature, injection pressure, injection duration, and porosity on the heat transfer processes inside the reservoir. The research demonstrates that the reservoir’s internal temperature gradually rises as the injection duration increases. Additionally, porosity (an increase from 0.1 to 0.3 enhances the heat propagation rate by 15%) and injection pressure (an increase from 5 MPa to 8 MPa boosts the heat propagation rate by 25%) significantly affect the heat transfer rate.

Keywords: 

in-situ combustionheavy oil reservoirsnumerical simulationmathematical modelheat transfer mechanisms

作者单位

  • 辽宁石油化工大学石油工程系

发表评论