SIMULATION OF FLUID FLOW MECHANISMS IN HIGH PERMEABILITY ZONES (SUPER-K) IN A GIANT NATURALLY FRACTURED CARBONATE RESERVOIR

本文研究了某大型非均质天然裂缝性碳酸盐岩储层中的流体流动机制。研究针对一个被称为”高渗带(Super-K)”的极薄高渗透层展开,该层是特定井位的主要产层,贡献了绝大部分产量。
众所周知,这些高渗带与天然裂缝系统相连。理解天然裂缝性储层中的流体流动机制极为复杂。为此,本研究将高渗带(Super-K)与天然裂缝视为两个独立的流动系统。

基于本研究成果,在此类双连续介质储层中,必须审慎评估并执行各项油藏管理措施。研究这种双重介质流动行为,对于优化未来完井策略及提升油藏管理决策水平至关重要。

本研究系统回顾了储层地质特征、高渗带识别技术及天然裂缝的相关文献。为理解此类双连续介质储层中的流体流动规律,我们构建并研究了一个双渗透率(Dual Permeability)模拟模型。研究使用了部分地质与生产数据;然而,由于天然裂缝的一些关键参数缺失,该模型被设定为假设模型。我们获得了合理的历史拟合结果,并以此作为该油藏模型的基础。随后开展了多项敏感性分析以理解流体流动行为,并进行了预测模拟,从而根据所得结果为未来新井的完井方案提供建议。

研究最终明确了结论并提出了相应的完井方案。结果表明,天然裂缝是导致油井过早见水的主要原因,而高渗带(Super-K)则是水相窜流至井筒的次要因素。

ABSTRACT

Fluid flow mechanisms in a large naturally fractured heterogeneous carbonate reservoir were investigated in this manuscript. A very thin layer with high permeability that produces the majority of production from specific wells and is deemed the Super-K Zone was investigated. It is known that these zones are connected to naturally occurring fractures. Fluid flow in naturally fractured reservoirs is a very difficult mechanism to understand. To accomplish this mission, the Super-K Zone and fractures were treated as two systems.

Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better future completion strategies and for enhanced reservoir management decisions.

The reservoir geology, Super-K identification and natural fractures literature were reviewed. To understand how fluid flows in such a dual continuum reservoir, a dual permeability simulation model has been studied. Some geological and production data were used; however, due to unavailability of some critical values of the natural fractures, the model was assumed hypothetical. A reasonable history match was achieved and was set as a basis of the reservoir model. Several sensitivity studies were run to understand fluid flow behavior and prediction runs were executed to help make completion recommendations for future wells based on the results obtained.

Conclusions and recommended completions were highlighted at the end of this research. It was realized that the natural fractures are the main source of premature water breakthrough, and the Super-K acts as a secondary cause of water channeling to the wellbore.

一条评论

  1. 本文研究了某大型非均质天然裂缝性碳酸盐岩储层中的流体流动机制。研究针对一个被称为”高渗带(Super-K)”的极薄高渗透层展开,该层是特定井位的主要产层,贡献了绝大部分产量。
    众所周知,这些高渗带与天然裂缝系统相连。理解天然裂缝性储层中的流体流动机制极为复杂。为此,本研究将高渗带(Super-K)与天然裂缝视为两个独立的流动系统。

    基于本研究成果,在此类双连续介质储层中,必须审慎评估并执行各项油藏管理措施。研究这种双重介质流动行为,对于优化未来完井策略及提升油藏管理决策水平至关重要。

    本研究系统回顾了储层地质特征、高渗带识别技术及天然裂缝的相关文献。为理解此类双连续介质储层中的流体流动规律,我们构建并研究了一个双渗透率(Dual Permeability)模拟模型。研究使用了部分地质与生产数据;然而,由于天然裂缝的一些关键参数缺失,该模型被设定为假设模型。我们获得了合理的历史拟合结果,并以此作为该油藏模型的基础。随后开展了多项敏感性分析以理解流体流动行为,并进行了预测模拟,从而根据所得结果为未来新井的完井方案提供建议。

    研究最终明确了结论并提出了相应的完井方案。结果表明,天然裂缝是导致油井过早见水的主要原因,而高渗带(Super-K)则是水相窜流至井筒的次要因素。

发表评论