Integrating stimulation practices with geo-mechanical properties in liquid-rich plays of Eagle Ford Shale

在富液的Eagle Ford地区开发中,尝试了许多水力压裂设计技术。本研究展示了为何会观察到不同结果,这是由于岩石的地质力学应力以及相关储层特性在不同地区的变化造成的。

富液目标储层的最佳施工方法与气体页岩储层的施工方法有很大的不同,主要是由于遇到的多相流动和更高的黏度。本研究提出了一种适用于Eagle Ford页岩液体丰富区的新型处理工作流程。

通过对整个地区的多个数据集进行综合分析,将其作为三维水力压裂模拟器的输入,模拟控制产量提高的关键裂缝参数。然后,在生产分析和预测、井优化和经济模型中使用这些结果,比较不同施工方案与最佳的支撑剂放置方式,以实现高初始产量和长期最终采收率。

该工作流程的一个重点是最大限度地提高支撑剂运移,以实现连续-最佳导流-裂缝半长。由于非常规储层的复杂性,往往很难保持支撑剂与井筒的完全连接,导致裂缝网络的很大潜力被浪费。了解水力压裂与岩石结构的相互作用有助于设计以实现最佳效果。

这些结果被用于确定有效开发选择的储层面积内的最佳井距。目前,Eagle Ford页岩地层的大部分已有超过两年的生产历史。本研究的结果用于将现场产量与地质储层和操作参数相结合,以证明采用高效的工作流程在压裂设计中的重要性。使用本研究中提出的方法,可以达到对水力压裂建模的适当理解和应用。

Many of the techniques for hydraulically fracturing design were attempted in the liquid rich Eagle Ford developments. This study shows why different results were observed due to the variation of geomechanical stresses of the rock across a play and related reservoir properties. An optimum treatment for a liquids-rich objective is much different than that for a gas shale due primarily to the multiphase flow and higher viscosities encountered.

This study presents a new treatment workflow for liquids-rich window of Eagle Ford Shale. Review and integration of data from multiple sets across the play are used as input to a 3D hydraulic fracture simulator to model key fracture parameters which control production enhancement. These results are then used within a production analysis and forecast, well optimization, and economic model to compare treatment designs with the best placement of proppant to deliver both high initial production and long term ultimate recoveries.

A key focus for this workflow is to maximize proppant transport to achieve a continuous – optimum conductive – fracture half length. Often, due to the complexity of unconventional deposition, it is difficult to maintain complete connectivity of a proppant pack back to the wellbore. As a result, much of the potential of the fracture network is lost. Understanding the interaction of a hydraulic fracture and the rock fabric helps with designing this behavior to achieve the best results. These results are used to determine optimum well spacing to effectively develop within a selected reservoir acreage.

Currently, numerous wells exist with over two years of production history in much of the Eagle Ford shale formation. Results from this study are used to compare values from field production to demonstrate the importance of employing a diligent workflow in integrating reservoir and operational parameters to the fracture design. A proper understanding and application of hydraulic fracturing modeling is achieved using the methodology presented in this study.

日程表

低可信度描述已自动生成

图表, 折线图

描述已自动生成

发表评论