Numerical Simulation of CO2 Dissolution and Mineralization Storage Considering CO2-Water-Rock Reaction in Aquifers

 

该研究针对气候变化中二氧化碳捕获与封存技术的重要性进行了探讨。通过将捕获的二氧化碳注入深部咸水层,二氧化碳经历构造捕集、溶解和矿化等一系列反应,实现长期储存。研究中考虑了二氧化碳与水和岩石的反应,通过实验数据拟合获得了溶解度与压力之间的关系,并利用CMG软件的GEM模块,结合鄂尔多斯盆地深部咸水含水层的物理参数,建立了一个机理模型。模拟了20年的二氧化碳注入和总共80年的储存过程,研究了储层条件和注入方案对二氧化碳溶解和矿化的影响。研究结果表明,渗透率不宜过高,孔隙度的增加有利于储存。随着注入速度的增加,二氧化碳的储存量增加。底部射孔有利于二氧化碳的溶解和矿化,是二氧化碳储存的最有利位置。

CMG软件应用情况

在本研究中,CMG软件的GEM模块被用来模拟鄂尔多斯盆地深部咸水含水层的二氧化碳-水-岩石反应。通过物理模拟实验获得的参数,研究者建立了一个一维模型来模拟二氧化碳的溶解和矿化过程。此外,CMG软件还用于模拟不同储层条件和注入方案对二氧化碳溶解和矿化的影响,包括渗透率、孔隙度、注入速度和射孔位置等因素的影响。

Abstract

CO2 storage technology is crucial in addressing climate change by controlling the greenhouse effect. This technology involves the injection of captured CO2 into deep saline aquifers, where it undergoes a series of reactions, such as structure binding, dissolution, and mineralization, enabling long-term storage. Typically, the CO2 is maintained in a supercritical state, enhancing its storage efficiency. However, the efficiency can be influenced by the CO2-water-rock reactions. Many minerals exist in rock, like calcite, dolomite, kaolinite, etc. This study introduces some chemical reactions that occur during the dissolution and mineralization of CO2. The relationship between solubility and pressure was obtained through solubility fitting. We obtained the initial parameters of the CO2-water-rock reaction experiment by fitting the data. These parameters can be applied to the mechanism model. This study employs the GEM module of CMG software, integrating physical parameters from the Ordos Basin’s deep saline aquifers to develop a mechanism model. In this model, CO2 injection started from the first year and continued for 20 years. This study simulated a total of 80 years of CO2 storage. This study has elucidated how reservoir conditions and injection schemes affect the dissolution and mineralization of CO2. This study creatively combines practical experiments and numerical simulations and uses numerical simulations to compensate for the manpower and material resources consumed in actual experiments. The research results indicate that permeability should not be too high, and an increase in porosity is beneficial for storage. As the injection rate increases, the amount of CO2 storage increases. Top layer perforation yields lower efficiency compared to full, middle, or bottom layer perforation, with the latter providing the higher efficiency in CO2 dissolution and mineralization. Bottom perforation is the most favorable perforation position for CO2 storage.

作者单位

长江大学非常规油气湖北省协同创新中心

 

发表评论