Stimulated Reservoir Volume Characterization and Optimum Lateral Well Spacing Study of Two-Well Pad: Midland Basin Case Study
This paper introduces a flow simulation-based reservoir modeling study of a two-well pad with long production history and identical completion parameters in the Midland Basin. The study includes building geologic model, history matching, well performance prediction, and finding optimum lateral well spacing in terms of oil volume and economic metrics. The reservoir model was constructed based on a geologic model, integrating well logs, and core data near the target area. Next, a sensitivity analysis was performed on the reservoir simulation model to better understand influential parameters on simulation results. The following history matching was conducted with the satisfactory quality, less than 10% of global error, and after the model calibration ranges of history matching parameters have substantially reduced. The population-based history matching algorithm provides the ensemble of the history-matched model, and the top 50 history-matched models were selected to predict the range of Estimate Ultimate Recovery (EUR), showing that P50 of oil EUR is within the acceptable range of the deterministic EUR estimates. With the best history-matched model, we investigated lateral well spacing sensitivity of the pad in terms of the maximum recovery volume and economic benefit. The results show that, given the current completion design, the well spacing tighter than the current practice in the area is less effective regarding the oil volume recovery. However, economic metrics suggest that the additional monetary value can be realized with 150% of current development assumption. The presented workflow provides a systematic approach to find the optimum lateral well spacing in terms of volume and economic metrics per one section given economic assumptions, and the workflow can be readily repeated to evaluate spacing optimization in other acreage.
Simulator: IMEX