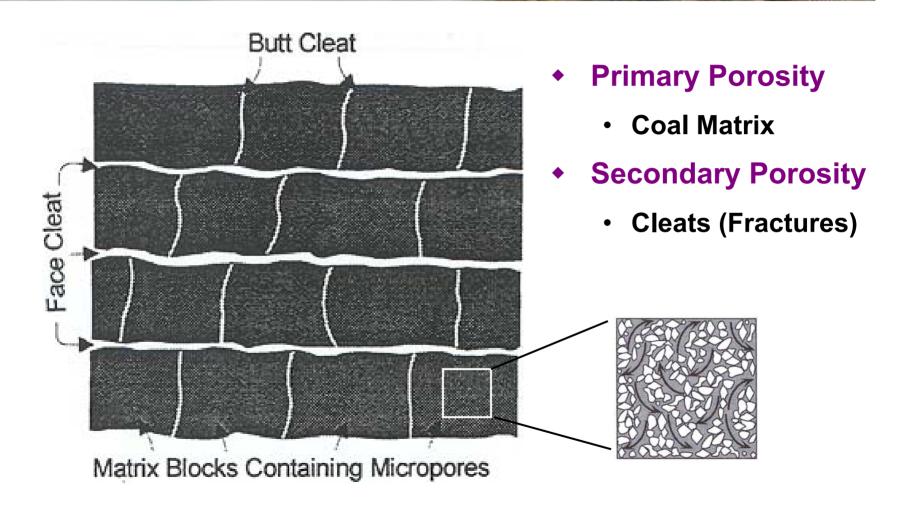
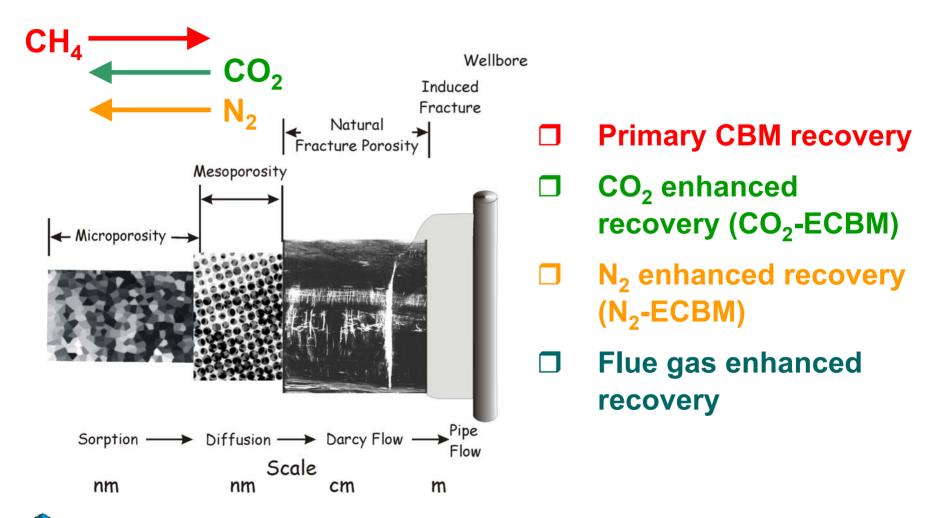


CBM & ECBM Reservoir Simulation

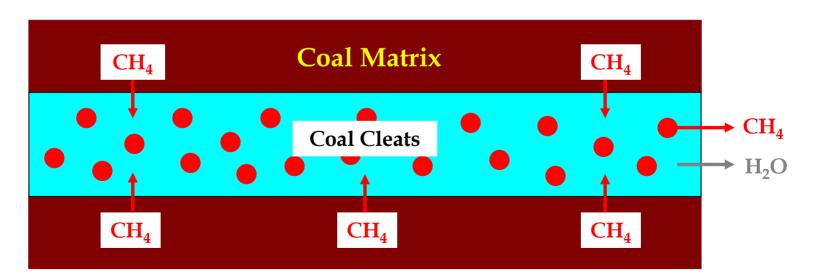
Computer Modelling Group Inc.


Acknowledgements

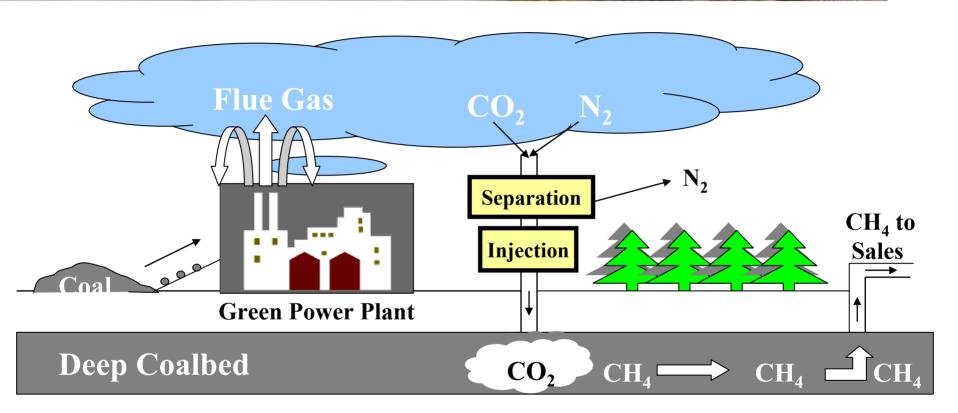
- Presentation Created by
 - Peter Sammon (CMG, Ltd.) Technical Coordinator of GEM development team
 - Mohamed Hassam (CMG, Ltd.) member of GEM development team
- Work performed with assistance from
 - David H.-S. Law (Alberta Research Council) Head of CBM Consortium
 - Bill Gunter (Alberta Research Council) -
- Multi-component extension to Palmer-Mansoori Theory
 - Matt Mavor (Tesseract) Consultant


Structure of Coal

Flow in Coal



Primary CBM Recovery Mechanisms


- ☐ Reduce cleat pressure by producing water
- Methane desorbs from matrix, diffuses to cleats
- Methane and water flow to wellbore
- Cleat permeability affected by matrix responses

ECBM Processes

- Enhanced Coalbed Methane (ECBM) Recovery
- Green House Gas (GHG) Sequestration

Modelling Issues: Properties of Coal

- Primary porosity system (coal matrix)
 - Microporosity (< 2 nm)
 - Mesoporosity (2 50 nm)
 - Very low flow capacity: perms in microDarcy range
- ☐ Secondary porosity system (coal cleats)
 - Macroporosity (> 50 nm)
 - Natural fractures
 - Much greater flow capacity: perms in milliDarcy range

Issues for CBM Modelling

- Multiple porosity model required
 - Allows standard Darcy flow in fracture (Cleat) system
- Diffusion process for gas from matrix to fracture
 - No Darcy flow required here
- Adsorption/desorption of gas in the matrix
 - Pressure-dependent isotherms
- Coal shrinkage due to gas desorption and swelling due to cleat depressurization
 - Alters fracture permeability
- Water Blockage Issues
 - Water in cleats can interfere with gas flow from/to matrix

Issues for ECBM Modelling

- ☐ All the above for CBM <u>but add</u>
 - Multi-component gas (CH₄, CO₂, N₂, ...)
 - Need to calculate accurate gas properties
 - Multi-component adsorption/desorption isotherms
 - Multi-component diffusion modelling
 - Can have bi-lateral diffusion
 - Coal mechanics become more complicated
 - Additional coal swelling due to CO₂ adsorption competing with other effects
 - Could take place in an non-isothermal environment

GEM: ECBM capabilities

☐ How GEM addresses these issues

- Start with a multi-component, multi-phase reservoir simulator: GEM (CMG's EOS Reservoir Simulator)
- GEM uses an Equation of State (EOS) formulation
 - Accurate fluid properties
 - Can use library components
 - Can tune to lab data
 - For instance, could tune to viscosities for CO₂ mixtures measured near the critical point of CO₂

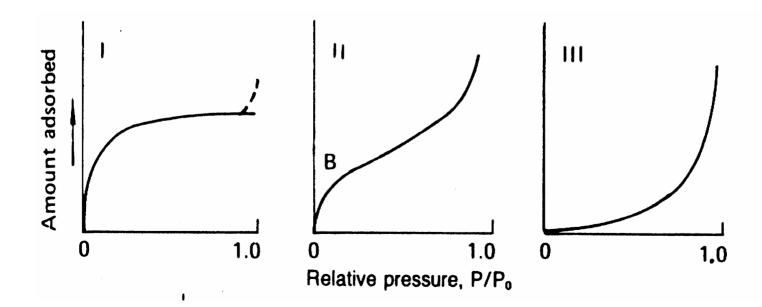
GEM: Adsorption Definition

☐ GEM has different adsorption models

Extended Langmuir model

$$\omega_{i} = \omega_{i, \max} \left(\frac{(y_{ig} p/p_{Li})}{1 + \sum_{j} (y_{jg} p/p_{Lj})} \right)$$

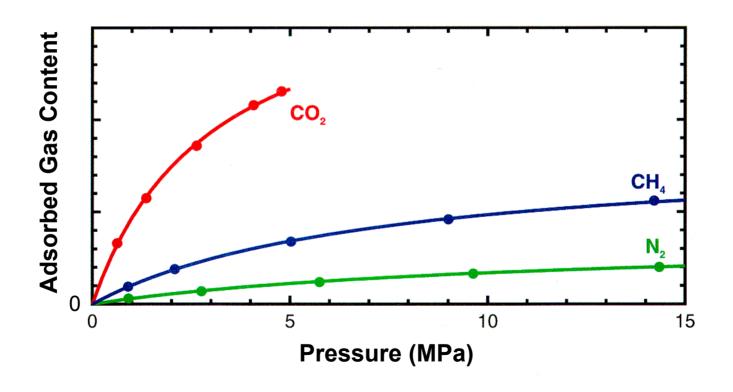
- Based on Langmuir isotherm for single components
- Provides a multi-component extension
- Tabular input for binary systems
 - Allows direct input of measured lab data



GEM: Adsorption Definition

☐ GEM uses different adsorption models

- General tabular input
- For more complicated systems



GEM: Adsorption Definition

Adsorption isotherms (Langmuir type)

GEM: Diffusion Modelling

- □ Input of coal diffusion "times"
 - Use measured coal desorption times (days) directly
 - Can be component dependent
 - Internally calculates diffusive flow
- □ Direct input of gas phase diffusion "rates"
 - Enter diffusion constants (cm²/sec)
 - Enter estimated coal cleat (fracture) spacings
 - Leads to an effective inverse area: Shape Factor
 - Flow based on product of the two terms

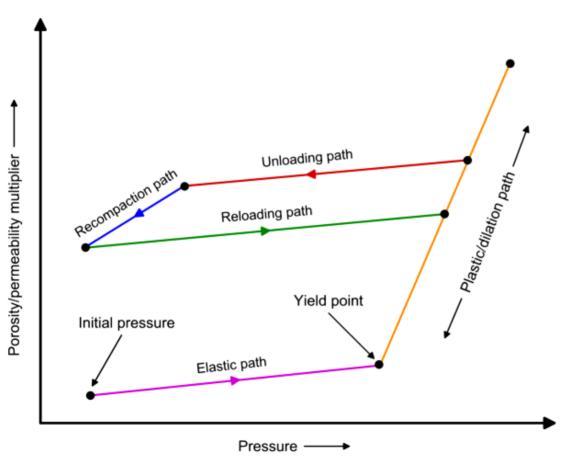
GEM: Diffusion Modelling

- ☐ Direct input of gas phase diffusion "rates"
 - Specify {DiffCoeff_i} for each component
 - Specify fracture spacings: DFrac_i, DFrac_k
 - These imply the following shape factor:

Shape =
$$4 \sum_{i} \frac{1}{(DFrac_i)^2}$$

- Used to find diffusional flow from bulk coal ↔ cleats
 - Diffusion Constant = Shape × DiffCoeff_i

- When gas/water is produced initially
 - Pressure in cleats decreases, alters effective stresses
 - Cleats close, lowering permeability
- But desorbing methane
 - Causes matrix shrinkage, opening cleats, increasing k
 - Reduces water saturation
- Injecting other gases
 - Causes matrix swelling
- Offsetting effects requires simulation to resolve



- ☐ GEM has capabilities for shrinkage/swelling
 - Input for a "compaction/dilation" option
 - Porosity/permeability multipliers
 - Functions of pressure
 - Uses tabular input

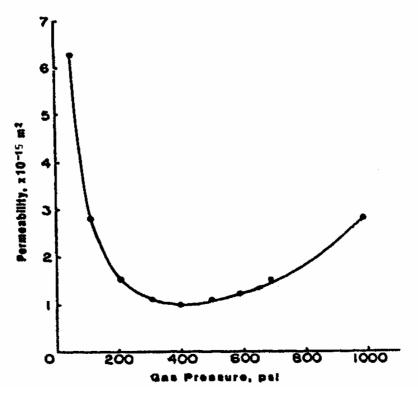
Compaction/dilation scanning curves

Tables of φ and/or k multipliers as functions of pressure

☐ GEM also has Palmer/Mansoori models

- Basic model uses relevant rock mechanics
 - Initial pressure (p_{init}) and porosity (ϕ_{init})
 - Young's modulus (E) and Poisson's Ratio (v)
 - Max strain at inf pres (ϵ_L) and half-strain pressure (ρ_ϵ) (amounting to a Langmuir-type model for strain)

$$\frac{\phi}{\phi_{init}} = 1 + c_f(p - p_{init}) + \frac{\epsilon_L}{\phi_{init}} \left(1 - \frac{K}{M}\right) \left(\frac{p_{init}}{p_{\epsilon} + p_{init}} - \frac{p}{p_{\epsilon} + p}\right)$$


Function of v and $1/(E\phi_{init})$ Function of v

■ Typical cleat permeability plot for methane

• Using $(k/k_{init}) = (\phi / \phi_{init})^{pwr}$

■ Multi-component Palmer/Mansoori models

- Problem: CO₂ injection causes coal matrix to swell
 - Swelling much greater than shrinkage due to CH₄ desorption
 - Expect that wells might seriously lose injectivity
- Need compositionally-dependent P&M parameters
 - Improvement over the user needing to input one "average" set of parameters
 - Specifying composition-dependent ε_L and p_ε

■ Multi-component Palmer/Mansoori models

- Max strain at inf pres (ε_L) and half-strain pressure (p_ε) have been made component dependent, Based on work by Mavor & ARC
- Law and Mayor used to match FBV field tests
- Law using to match CUCBM pilot test

$$\frac{\phi}{\phi_{init}} = 1 + c_{f} (p - p_{init}) + \frac{1}{\phi_{init}} \left(1 - \frac{K}{M} \right) \left(\sum_{j=1}^{nc} \frac{p_{init} \, \epsilon_{Lj} \left(y_{init,j} / p_{\epsilon j} \right)}{1 + p_{init} \sum_{k=1}^{nc} \left(y_{init,k} / p_{\epsilon k} \right)} - \sum_{j=1}^{nc} \frac{p \epsilon_{Lj} \left(y_{j} / p_{\epsilon j} \right)}{1 + p \sum_{k=1}^{nc} \left(y_{k} / p_{\epsilon k} \right)} \right)$$

Other GEM features

- ☐ Many other possibilities available with GEM
 - Can model gas solubility in water, water vapourization
 - Non-isothermal problems
 - Non-Darcy flow models available
 - Forchheimer modifications, in reservoir and at wells
 - Diffusion/Velocity-Dependent Dispersion modelling
 - In cleat system
 - Numerical dispersion reduction (TVD schemes)
- □ Geochemical reactions being tested for CO₂ sequestration in saline aquifers
 - Application to ECBM (e.g.carbonic acid dissolving minerals in coal)?

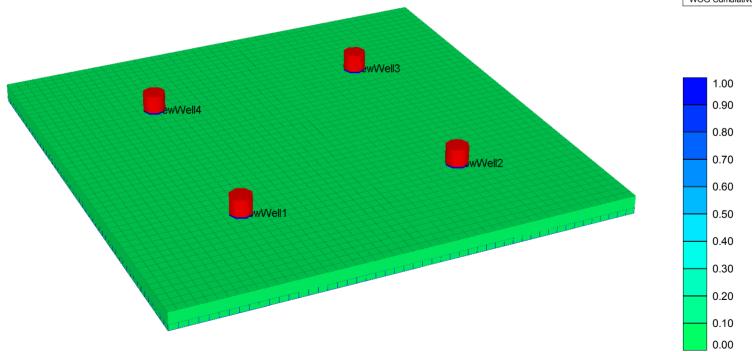
Other GEM features

- □ Typical full-field simulator features
 - Can specify spatially dependent properties, including those for adsorption, rock mechanics, ...
 - Various initializations, including saturated and under-saturated coals
- ☐ Full Windows-based input processing and graphics

Example

- ☐ GEM for CBM has been used for both
 - Investigative modelling
 - Field studies
- □ Look at results from a 5-spot investigative model
 - Production with & without CO₂ or N₂ injection

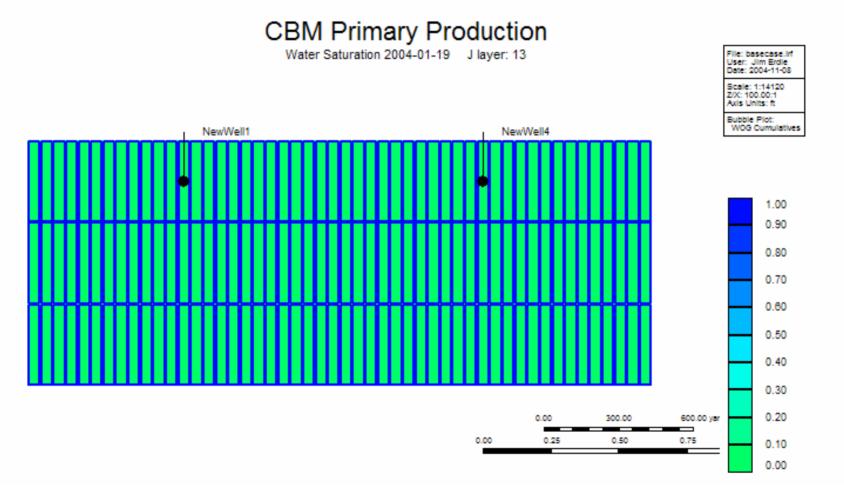
3D View of 3-layer Coalbed

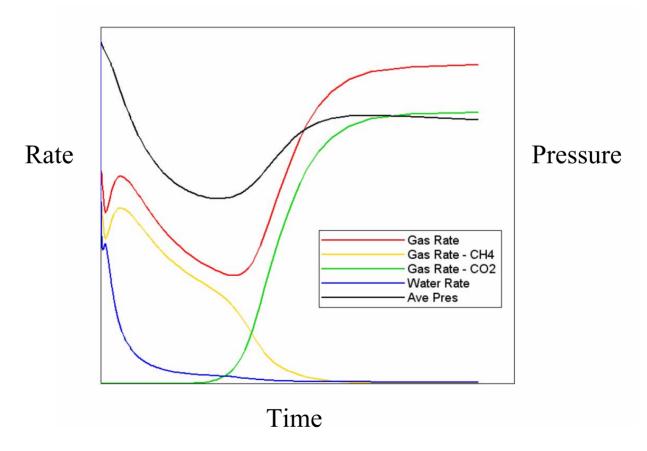

CBM Primary Production

Water Saturation 2014-01-19

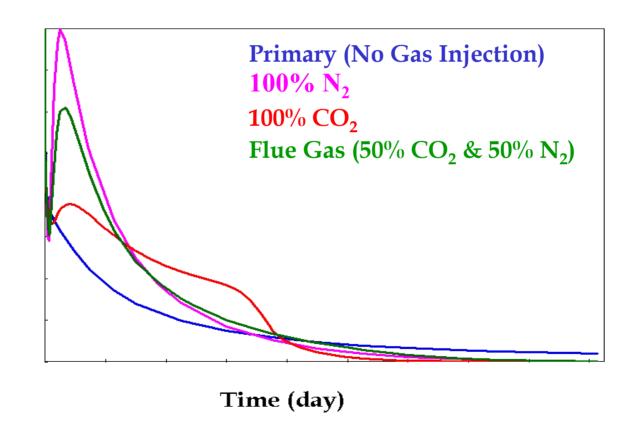
File: basecase.irf User: Jim Erdle Date: 2004-11-08

Z/X: 10.00:1

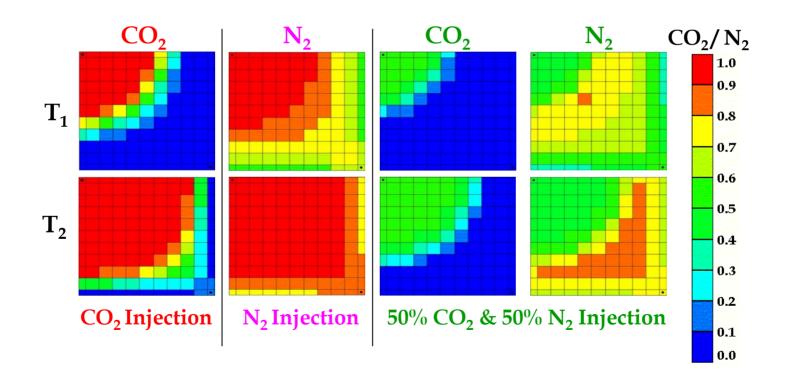

Bubble Plot: WOG Cumulatives


2D X-section — Dewatering Cleats

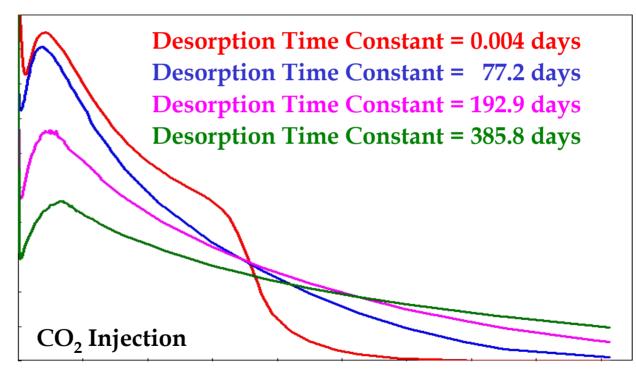
☐ Results from a 5-spot injection model

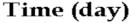


☐ Results from a 5-spot injection model


Methane Production Rate (m3/day)

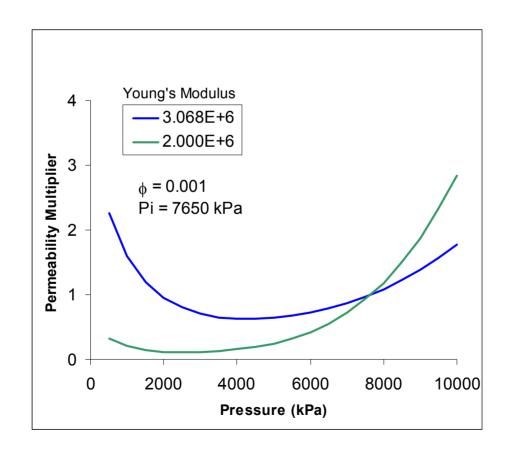
□ Injection profiles



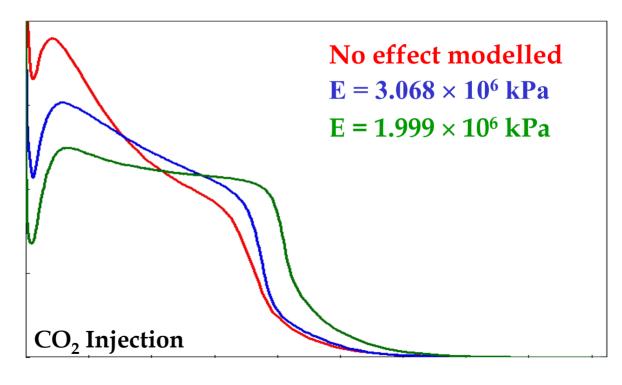


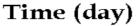
☐ Effects of varying desorption times

Methane Production Rate (m3/day)



☐ Effects of shrinkage/swelling (P&M model)





☐ Effects of shrinkage/swelling

Methane Production Rate (m3/day)

Conclusions (1)

- □ A multi-purpose compositional model (GEM) has been upgraded to include the physics for modelling CBM/ECBM recovery processes
 - 1. Multi-component, pressure and composition-dependent gas adsorption, desorption, and re-adsorption in the coal matrix using an extended Langmuir isotherm technique, or tables
 - 2. Dual porosity (i.e., coal matrix and cleat) system behavior
 - 3. Diffusional flow of gas between the coal matrix and the cleats
 - 4. Cleat permeability and porosity can be modelled as functions of effective stress (Palmer and Mansoori model)

Conclusions (2)

- □ A multi-purpose compositional model (GEM) has been upgraded to include the physics for modelling CBM/ECBM recovery processes
 - 5. Coal swelling and shrinkage can be modelled as a function of gas (e.g. CO2) adsorption or gas (e.g. methane) desorption, respectively
 - 6. General distributions of porosity and (anisotropic) permeabilities can be assigned in both the coal matrix and the cleat systems
 - 7. Multi-phase Darcy and Non-Darcy (i.e. Klinkenberg for low pressure conditions and turbulent for high velocity conditions) flow of gas and water through the cleat system to the wells
 - 8. Mixing of injected and in-place gases via multi-component molecular diffusion and velocity-dependent, longitudinal and transverse convective dispersion
 - 9. Dissolution of injected and in-place gases into the aqueous (water) phase

Consultants/Universities/Labs using GEM for CBM/ECBM/CO2 Sequestration

Tesseract (Park City) - Matt Mavor
Mansoori & Assoc (Denver) – John Mansoori
Sproule (Denver) – John Seidle
Raven Ridge Resources (Grand Junction) - Ron Collings
SI International (Denver) – George Lane
Malkewicz Hueni Associates (Denver) – Tim Hower & Dan Simpson
Epic Consulting (Calgary) - Richard Baker
Ticora Geosciences (Denver) – Simon Testa
NIOSH (Pittsburgh) - Ozgen Karacan
KGS (Lawrence) – Tim Carr
ARC (Edmonton) – David Law
Penn State (State College) – Turgay Ertekin
WVU (Morgantown) - Shahab D. Mohaghegh
Oklahoma U (Norman) – Richard Hughes
U of Texas (Austin) – Gary Pope
Texas A&M (College Station) – David S. Schechter

E&P Companies using GEM for CBM/ECBM/CO2 Sequestration

- □ ConocoPhilips (Calgary) Kevin Ratterman
- ☐ ChevronTexaco (Houston) Kirk McIvor
- ☐ Shell (Houston) Jeff Bain
- ☐ EOG Resources (Houston) Charles Smith
- ☐ Encana (Denver) Robert Downey & John Mansoori
- ☐ Burlington Resources (Calgary) Chris Clarkson
- □ Devon (Calgary) ?
- □ Talisman (Calgary) ?
- □ PetroChina (China) ?
- □ CUCBM (China) ?
- ☐ Gazonor (Russia) ?

