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OUR EXPERTISE

CMG has arich history of
bringing industry-first
solutions to the market

Our expertise spreads across a broad
spectrum of energy workflows, and our
technology can help energy companies
navigate this complex landscape.

B Emerging Technologies

Traditional Oil and Gas

Il Conventional [l Enhanced Oil Recovery [l Unconventional Heavy Oil

N
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Energy Transition

B Geothermal

[ Hydrogen Storage & Production [l Carbon Capture Storage (CCS)
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Geothermal techniques modelled by CMG
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Source: GeoVision Analysis 2019, US DOE

« Heat, water, permeability present

« Hot water and steam production

« Water injection for pressure
maintenance

% x ) | —— Water vapor from
- > | cooling facility
Electricity O, ~
W
. _=

Power Plant

Geothermal fluid is recycled
to the reservoir through

the injection well to
complete the loop

Injected geothermal
fluid enhances the
permeability of the rock

N
Geothermal fluid j
'

is pumped to the

surface through
production wells

Source: US DOE, 2016

Hot dry rock, no permeability

Hydraulic fracture for permeability creation
Hot water injection for circulation

Hot water and steam production

& ECO2G 8 ccponass

Production Side:

Source: GreenFire Energy '

No interaction of well & reservoir
Only fluid recirculation, injected fluid
heating via conduction
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Geothermal techniques modelled by CMG

\/ Heavy Oil Late Life Energy Recovery (HOLLER)

vf

CO2 Geothermal

Haller Prod_1 I
HoHer_In‘ecTorI
¥

« SAGD wells near end of life

« Mature reservoirs at high temperatures (~300 F) used as a heat recovery
medium

» Hot water and steam production

turbine
(CO, expansion

and cooling)  electricity
generator

heated air
(no pollutants,

e.g., no CO,) Cco,
cools CO, in from
hot CO, (with more closed-oop  emitter
favorable fluid flow and (e.g., coal-fired
power plant)

thermal properties for heat
energy extraction at depth

and energy conversion to
electricity than hot water)

low-permeability rock
over large depth and T NOT TO SCALE

sossibly additional caprocks (reservoir is deep)

caprock / trap (ve

source: geg.ethz.ch

Heated CO2 in a closed loop used to heat
air to generate electricity

Part of CO2 will be stored permanently in an
aquifer underground
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Physics in Geothermal Reservoirs

mam Fluid Flow in porous media

» Generally, naturally fractured reservoirs
 Hydraulic Fractures Modelling (Enhanced Geothermal Systems)

Heat Transfer

» Conduction/ Convection /Dispersion

mam Wellbore Heat Loss and Pressure Drop

« Wellbore conduction and convection for temperature drop
» Wellbore hydraulics calculations for pressure drop

Geomechanics

 Cap rock integrity / Thermal fracturing / Subsidence

= Geochemistry and Reactions
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Geothermal Simulation: Wellbore Modelling ST
_ Wellhead — Key
< Well calculations from first perforation to well-head: «— Conductor cement ﬁ
- Semi-Analytical Model (SAM) e caing et | s :
*  Flexwell e >
* Flexwell can accurately handle-
* Multiple tubing streams I mcermosicecsng s
* Cross flow o
* Phase segregation L
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Water Enthalpy Model
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Conventional Hydrothermal — base model

Typical Geothermal resource, with a system of nat
fractures

T=170C, P =26,000 kPa

7 Geothermal Wells

Objective: Extension of Energy Production Plateau

Injectors open based on pressure control

CMC




Conventional Hydrothermal — Results Analysis

[
CONVENTIONAL GEOTHERMAL SYSTEM
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Conventional Hydrothermal — Uncertainty

Fracture spacing

Porosity

Kv/kh

Parameter

Matrix Perm  10:31%

:

Rock Thermal Conductivity

Rock Heat Capacity

i
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Effects (%)

On Field Enthalpy
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Closed Loop Geothermal- U-Shape Wells
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Closed Loop Geothermal — Single Vertical Well
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Geological storage options

1. Saline Aquifers

2. Injection into deep coal seams and

ECBM

TR
T L e " .

3. Use of CO, in enhanced oil recovery

(EOR) - CCUS

4. Depleted Oil and Gas reserves

Source: Global CCS Institute

16

CMC



Trapping Mechanisms

Structural

Trapping

Short Term

Solubility

Trapping

Medium-Long
Term

CMC

Residual Gas

Trapping

Short Term

Mineral

Trapping

Long Term

Negative buoyancy
drives stored CO,
away from top seal

5,
. Gas phase

Aqueous
* phzse

Gas Relative Permeability
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GEM - Tool to Model CO, Geological Storage =1

Generalized Equation-of-State Modeling (GEM)

» Thermal Multiphase Compositional Reservoir Simulator

o » Gas Solubility in aqueous phase

« H,0 Vaporization
l « Geochemistry (Aqueous/Mineral Reaction)
/& \ « Joule-Thompson effect included

|+ Relative permeability hysteresis (Residual gas
- trapping)

. * Geomechanics (cap rock integrity / thermal
. fracturing / faults reactivation)

CMC

Cap Rock

(a) Structural/stratigraphic trapping (b) Residual trapping
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CCS in Aquifer

Aquifer Properties

Permeability 70 mD
Porosity (fraction) 0.14
Depth 1900 m
Pressure 20,500 kPa
Temperature 50C

3 CO, Injectors

Continuous injection of CO, for 10 Years

CO, Injection Rate, for each well: 1E5 Sm3/day
Shut-in time: 190 Years

CMC
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CCS in Aquifer — Plume Growth

[ |
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Trapping Mechanisms — including Mineralization
— TRAPPING SUMMARY PLOT
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Trapping Mechanisms- Impact

Impact of Trapping Mechanisms on Plume Growth

[
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Well Placement & Plume Growth
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Geomechanical Effects : Fault Reactivation

FAULT_REACTIVATION

l
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Geomechanical Effects: Cap Rock Integrity

|

CCS_AQUIFER_CAP_ROCK_LEAKAGE sr3 CASE_3A: Co2 BASE CASE+HYS+50L+INF

Parmeabilfy | (md) 2030-Jon-0T J Plana: 25 of 49 ] O ar W Fracon(Cop) 2030Jan01 3 Pons: B o146 t
688 — T
| INJECTOR
INJECTOR ] 0019
50,0000000- 750 =
~0015
813 — .
~40,0000000
i I—D‘OIO
875 - =
i i B T —30,0000000 |
T L e Looos
1] — 938
I | | —
] T [ 1 — I —20,0000000 oooo-l ’
o R o e p—— . 1000 — =
| | 4—T"] |
-] ] | _
| r_..--r-‘__ 1 i } f
1 L 1 — 100000000 1063 — L
EZ o e [ ] i
== S — ] Actualsegle 10
T i AxisUnifs m
o Sl 1125 — Total Blocks: 53,165 [~
“‘\\\x‘--..___ 1407 ! Active Blocks: 53,165 |
"‘-\,.\‘--—__, |
S \ | \ \ |
437200 437400 437600 437800 438000 438200

CMC —



Wellbore and Surface Facilities for CCS

a

<

Long-term Decisions \

Coupling between transient reservoir and
Steady-state wellbore/surface

GEM

(P eF

4
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Short-term Decisions

Coupling between transient reservoir and
transient wellbore/surface

e
e 9
GEM LedaFlow

coaun DR

LedaFlow®

™
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CoFlow + GEM — CCS in Aquifer & Depleted Reservoirs &) &I

—
e Offshore CCS, Temperature of 6 C at wellheads

* CO2 supercritical at supply terminal
* CO2 liquid injection at wellhead
* Allocation of CO2 based on wells injectivity

Jh
RS

{02 Sou

Valve_A_O7-17_inj

\—)v-}{- |lul|

Valve_A_05-17_inj 05-17j

~—>pd- —b-llu:ll
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1] Vahve_C_07-17_inj

(kP2
m 20000
16,370.8
. 127417
12517
- 5483355

Timestep
2024-08-01 00:00 =

Depleted Gas reservoir

20

Depleted Gas reservoir

CMC



CO2LINK : GEM LedaFlow Coupling

| “i» 3D visualizatior trw001_BHP_MAX_BHP_BHPDEPTH_Liquid - m}
[ Welibore | + [ Pressure U= HE &
1550
| 5578 ft
1600
r4 50
i
1
s
{
{ ot
3 NOT FOR COMMERCIAL USE
¢ [ Time: 000:00:00:0.0
| Pressure [kPa] [ ]eas
— = 1 [ Liquid
1997 2701 3405 4109 4814 5518 6222
Height scale: ' Diameter scale: '
400
A> PO - : . —
0 2,000 4,000 6,000

CO, phase change across wellbore during
start-up

Dynamic P/T change inside the wellbore
Pressurizing & cooling near the wellbore
area

CO, phase change near the wellbore
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Lithium Extraction and H, storage




Lithium EXxtraction

Lithium Source
and extraction method

Ore :
Deposits Brines
Min Surface Underground Brines
ININ :
9 8 Treatment (Wells Perforation)
Geothermal Oil Field Brine
Reservoirs Aquifers Aquifers

CMC



Lithium Extraction: Physics

Oil Field

) Hydrothermal Alteration ) Thermal Support
)) Reservoir Heterogeneities
)) Mineral Deposition
)) Porosity Reduction
)) Fluid Alteration Due To Reaction With The Rock
)) Complex Geology / Active Faults

)) Subsidence

CMC

Brine

Vv



| | ] [ ] | ] - -
Lithium Extraction from Brine T OlE
[
 Extract lithium brine through injecting fresh water
« Maximize lithium production while maintaining reservoir
pressure by sensitivity on:
» Well configurations & spacing Lithium
* Injection/production rates CMGBuilder Lithium_Brine_Comait.sr3 Water Molar Rata SC.-~Prod

* Reservoir heterogeneity Miolalty(is) 2021-Jon 01 fotonn -
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« Lithium production rate
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« Volumetric rate (m3 Li+/day) A
- Lithium molarity (Mol Li+/m3 H20) Cmmm——
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Hyd

A
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Hydrogen Storage: Geochemical Reactions

% Chemical equilibrium

H,0 = HY* + OH~
HCO; = HY + CO03~
C0,(aq) + H,0 = HY + HCO3

Q@ﬁ Mineral dissolution and precipitation

Calcite + H* = Ca*™ + HCO;3
Kaolinite + 6HY = S5H,0 + 2Si0,(aq) + 2AI***

Anorthite + 8H* = Ca*t + 2AI™" + 2 Si0,(aq)

C’}’_\ Methanation
CO,(aq) + 4H,(aq) - CH,(aq)+ 2H,0

CMC
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Thank You

...questions?
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